Search results for "LEAD COLLISIONS"

showing 10 items of 13 documents

Hot spots and gluon field fluctuations as causes of eccentricity in small systems

2021

We calculate eccentricities in high energy proton-nucleus collisions, by calculating correlation functions of the energy density field of the Glasma immediately after the collision event at proper time tau = 0. We separately consider the effects of color charge and geometrical hot spot fluctuations, analytically performing the averages over both in a dilute-dense limit. We show that geometric fluctuations of hot spots inside the proton are the dominant source of eccentricity whereas color charge fluctuations only give a negligible correction. The size and number of hot spots are the most important parameters characterizing the eccentricities.

Nuclear TheoryField (physics)ProtonAZIMUTHAL ANISOTROPIESFLOWmedia_common.quotation_subjectFOS: Physical sciencesHot spot (veterinary medicine)hiukkasfysiikka114 Physical sciences01 natural sciencesNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesProper timeEccentricity (behavior)LONG-RANGEHARMONICSNuclear Experiment010306 general physicsPLUS PB COLLISIONSGluon fieldmedia_commonPROTON-LEAD COLLISIONSPhysics010308 nuclear & particles physicskvarkki-gluoniplasmaANGULAR-CORRELATIONSComputational physicsHigh Energy Physics - PhenomenologyNEAR-SIDEAstrophysics::Earth and Planetary AstrophysicsHIGH TRANSVERSE-MOMENTUMPPBEvent (particle physics)Color chargePhysical Review D
researchProduct

W and Z boson production in p-Pb collisions at √sNN=5.02 TeV

2017

The W and Z boson production was measured via the muonic decay channel in proton-lead collisions at sNN−−−√=5.02 TeV at the Large Hadron Collider with the ALICE detector. The measurement covers backward (−4.46 10 GeV/c are determined. The results are compared to theoretical calculations both with and without including the nuclear modification of the parton distribution functions. The W-boson production is also studied as a function of the collision centrality: the cross section of muons from W-boson decays is found to scale with the average number of binary nucleon-nucleon collisions within uncertainties. peerReviewed

Nuclear and High Energy PhysicsHeavy Ion ExperimentsHigh Energy Physics::Experimentproton-lead collisionsboson produtionNuclear Experiment
researchProduct

Impact of CMS 5.02 TeV dijet measurements on gluon PDFs - a preliminary view

2018

We discuss the implications of the preliminary CMS dijet data from 5.02 TeV pp and pPb collisions for gluon PDFs of the proton and nuclei. The preliminary pp data show a discrepancy with NLO predictions using for example the CT14 PDFs. We find that this difference cannot be accommodated within the associated scale uncertainties and debate the possible changes needed in the gluon PDF. A similar discrepancy is found between the CMS pPb data and NLO predictions e.g. with the EPPS16 nuclear modifications imposed on the CT14 proton PDFs. When a nuclear modification ratio of the pp and pPb data is constructed, the uncertainties in the scale choices and in proton PDFs effectively cancel and a good…

PhysicsHessian matrixParticle physicsproton–proton collisionsta114Scale (ratio)Protonparton distribution functionsNuclear TheoryFOS: Physical scienceshiukkasfysiikka114 Physical sciencesgluonsGluonHigh Energy Physics - Experimentsymbols.namesakeHigh Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)symbolsproton–lead collisionsNuclear ExperimentParametrization
researchProduct

Jet quenching as a probe of the initial stages in heavy-ion collisions

2019

Jet quenching provides a very flexible variety of observables which are sensitive to different energy- and time-scales of the strongly interacting matter created in heavy-ion collisions. Exploiting this versatility would make jet quenching an excellent chronometer of the yoctosecond structure of the evolution process. Here we show, for the first time, that a combination of jet quenching observables is sensitive to the initial stages of heavy-ion collisions, when the approach to local thermal equilibrium is expected to happen. Specifically, we find that in order to reproduce at the same time the inclusive particle production suppression, $R_{AA}$, and the high-$p_T$ azimuthal asymmetries, $v…

PB-PB COLLISIONSNuclear and High Energy Physicsnucl-thNuclear TheoryFLOWInitial stagesFlow (psychology)PREDICTIONSFOS: Physical scienceshiukkasfysiikkanucl-ex114 Physical sciences01 natural sciencesENERGYNuclear Theory (nucl-th)Nuclear physicsHigh Energy Physics - Phenomenology (hep-ph)heavy-ionsTRANSVERSE-MOMENTUM DEPENDENCE0103 physical sciencesNuclear Physics - ExperimentROOT-S(NN)=2.76 TEVNuclear Experiment (nucl-ex)010306 general physicsJet quenchingNuclear ExperimentNuclear ExperimentParticle Physics - PhenomenologyHeavy-ionsPhysicsThermal equilibriumJet (fluid)ionit010308 nuclear & particles physicsElliptic flowLEAD COLLISIONShep-phObservablelcsh:QC1-999initial stagesJet quenchingjet quenchingHigh Energy Physics - PhenomenologyNuclear Physics - TheoryParticleHeavy ionlcsh:PhysicsPhysics Letters B
researchProduct

Re-weighting at the LHC: the p–Pb data impact

2016

Abstract In this work we present selected results of a comprehensive analysis of the medium modifications in proton-lead LHC Run I data, and discuss the implications on different sets of nuclear parton densities. We find that the nuclear environment has a non-negligible relevance on the experimental results. We incorporate the information from Run I into the current nuclear densities and provide novel sets of nPDFs that will be useful for future predictions.

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Colliderta114nuclear parton densities010308 nuclear & particles physicsNuclear Theoryproton-lead collisionsParton01 natural sciencesNuclear environmentWeightingNuclear physics0103 physical sciencesRelevance (information retrieval)LHCNuclear Experiment010306 general physicsNuclear Physics A
researchProduct

Neutron-skin effect in direct-photon and charged hadron-production in Pb+Pb collisions at the LHC

2017

A well-established observation in nuclear physics is that in neutron-rich spherical nuclei the distribution of neutrons extends farther than the distribution of protons. In this work, we scrutinize the influence of this so called neutron-skin effect on the centrality dependence of high-$p_{\rm T}$ direct-photon and charged-hadron production. We find that due to the estimated spatial dependence of the nuclear parton distribution functions, it will be demanding to unambiguously expose the neutron-skin effect with direct photons. However, when taking a ratio between the cross sections for negatively and positively charged high-$p_{\rm T}$ hadrons, even centrality-dependent nuclear-PDF effects …

PhotonPhysics and Astronomy (miscellaneous)Nuclear TheoryHadronNuclear TheoryFOS: Physical sciencesATLAS DETECTORParton114 Physical sciences01 natural sciencesCENTRALITYNuclear physicsNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)DEPENDENCE0103 physical sciencescharged-hadron productionNeutronROOT-S(NN)=2.76 TEVSpatial dependence010306 general physicsNuclear ExperimentEngineering (miscellaneous)PhysicsLarge Hadron Collider010308 nuclear & particles physicsQCD PREDICTIONSLEAD COLLISIONSObservableneutron-skin effectPPB COLLISIONS3. Good healthHigh Energy Physics - PhenomenologyDistribution functionRegular Article - Theoretical Physicsydinfysiikka
researchProduct

EPPS16 - First nuclear PDFs to include LHC data

2017

We present results of our recent EPPS16 global analysis of NLO nuclear parton distribution functions (nPDFs). For the first time, dijet and heavy gauge boson production data from LHC proton-lead collisions have been included in a global fit. Especially, the CMS dijets play an important role in constraining the nuclear effects in gluon distributions. With the inclusion of also neutrino-nucleus deeply-inelastic scattering and pion-nucleus Drell-Yan data and a proper treatment of isospin-corrected data, we were able to free the flavor dependence of the valence and sea quark nuclear modifications for the first time. This gives us less biased, yet larger, flavor by flavor uncertainty estimates. …

Uncertainty estimates Uncertainty analysisHigh Energy Physics::LatticeLead collisionsNuclear TheoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesNuclear parton distribution functions114 Physical sciencesHigh Energy Physics - ExperimentHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Production dataHigh Energy Physics::ExperimentNuclear modificationNuclear ExperimentNuclear effectsBosonsDistribution functionsGlobal analysisInelastic scattering Deeply inelastic scatterings
researchProduct

Dielectron production in proton-proton and proton-lead collisions at √sNN=5.02TeV

2020

The first measurements of dielectron production at midrapidity (|ηe| < 0.8) in proton–proton and proton–lead collisions at √sNN = 5.02 TeV at the LHC are presented. The dielectron cross section is measured with the ALICE detector as a function of the invariant mass mee and the pair transverse momentum pT, ee in the ranges mee < 3.5 GeV/c2 and pT, ee < 8 GeV/c, in both collision systems. In proton–proton collisions, the charm and beauty cross sections are determined at midrapidity from a fit to the data with two different event generators. This complements the existing dielectron measurements performed at √s = 7 and 13 TeV. The slope of the √s dependence of the three measurements is…

Nuclear and High Energy Physics:Kjerne- og elementærpartikkelfysikk: 431 [VDP]ProtonHadronNuclear Theorydielectrondielectron production01 natural sciences7. Clean energyNuclear physicshadron-ion interactionshadron-hadron collisions; dielectron production;Ionic Collisionsdielectron cross sectiondielectron nuclear modification factor0103 physical sciencesInvariant massDielectronCharm (quantum number)Dielectron; hadron-hadron interactions; hadron-ion interactionsPhysics::Atomic PhysicsIonic Collisions; Relativistic Heavy-ion Collisions; Quark-Gluon Plasma010306 general physicsNuclear ExperimentQuantum chromodynamicsPhysicsLarge Hadron Collider010308 nuclear & particles physicsPhysicsVDP::Kjerne- og elementærpartikkelfysikk: 431hadron-hadron interactionNuclear matterhadron-hadron collisionsNATURAL SCIENCES. Physics.ALICE LHC proton-lead collisions proton-proton collisionsPRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431dielectron ; LHC ; dielectron cross section ; dielectron nuclear modification factorQuark–gluon plasmaQuark-Gluon PlasmaHigh Energy Physics::ExperimentLHChadron-hadron interactionsRelativistic Heavy-ion Collisions
researchProduct

An analysis of the impact of LHC Run I proton–lead data on nuclear parton densities

2016

We report on an analysis of the impact of available experimental data on hard processes in proton-lead collisions during Run I at the Large Hadron Collider on nuclear modifications of parton distribution functions. Our analysis is restricted to the EPS09 and DSSZ global fits. The measurements that we consider comprise production of massive gauge bosons, jets, charged hadrons and pions. This is the first time a study of nuclear PDFs includes this number of different observables. The goal of the paper is twofold: i) checking the description of the data by nPDFs, as well as the relevance of these nuclear effects, in a quantitative manner; ii) testing the constraining power of these data in eve…

Particle physicsNuclear TheoryPhysics and Astronomy (miscellaneous)ProtoneducationHadronNuclear TheoryFOS: Physical sciencesproton-lead collisionsParton114 Physical sciences01 natural sciencesHigh Energy Physics - ExperimentNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Pion0103 physical sciencesNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentEngineering (miscellaneous)PhysicsGauge bosonLarge Hadron Collider010308 nuclear & particles physicsObservable3. Good healthHigh Energy Physics - PhenomenologyDistribution functionRegular Article - Theoretical PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Jet-like correlations with neutral pion triggers in pp and central Pb–Pb collisions at 2.76 TeV

2016

Physics letters / B B763, 238 - 250 (2016). doi:10.1016/j.physletb.2016.10.048

heavy ion: scattering:Kjerne- og elementærpartikkelfysikk: 431 [VDP]ROOT-S(NN)=200 GEVQUARK-GLUON PLASMA; TRANSVERSE-MOMENTUM DEPENDENCE; LEAD-LEAD COLLISIONS; ROOT-S(NN)=2.76 TEV; ROOT-S-NN=2.76 TEV; ATLAS DETECTOR; SUPPRESSION; COLLABORATION; PERSPECTIVE; HADRONSHadronATLAS DETECTORCOLLABORATION01 natural sciencespi: triggerfragmentation functionParticle identificationHigh Energy Physics - ExperimentQUARK-GLUON PLASMAHADRON CORRELATIONSHigh Energy Physics - Experiment (hep-ex)ALICEp-Pb collisionsANISOTROPIC FLOWLEAD-LEADscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)ROOT-S(NN)=2.76 TEVPERSPECTIVENuclear ExperimentMonte CarloNuclear ExperimentPhysicsTime projection chamberHADRONSPerturbative QCDneutral pion ; lead-lead ; correlationsuppressioncharged particlelcsh:QC1-999Charged particleTRANSVERSE-MOMENTUM DEPENDENCE CENTRAL AU+AU COLLISIONS LEAD-LEAD COLLISIONS PLUS AU COLLISIONS QUARK-GLUON PLASMA HADRON CORRELATIONS ROOT-S-NN=2.76 TEV ROOT-S(NN)=200 GEV CHARGED-PARTICLES ANISOTROPIC FLOW.:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]PRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]CHARGED-PARTICLESflowLEAD-LEAD COLLISIONSperturbation theory [quantum chromodynamics]correlation: two-particleCOLLISIONSParticle physicsp p: scatteringPLUS AU COLLISIONSNuclear and High Energy PhysicseducationVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]transverse momentumtriggerstrigger [pi]114 Physical sciencesQUARK-GLUON PLASMA; TRANSVERSE-MOMENTUM DEPENDENCE; LEAD-LEAD; COLLISIONS; ROOT-S(NN)=2.76 TEV; ROOT-S-NN=2.76 TEV; ATLAS DETECTOR; SUPPRESSION; COLLABORATION; PERSPECTIVE; HADRONS530ROOT-S-NN=2.76 TEVNuclear physicsPionTRANSVERSE-MOMENTUM DEPENDENCEscattering [heavy ion]0103 physical sciencesFragmentation functionddc:530Nuclear Physics - Experimentquantum chromodynamics: perturbation theory010306 general physicscapturetwo-particle correlationstwo-particle [correlation]enhancementSUPPRESSIONneutral pionVDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431ta114CENTRAL AU+AU COLLISIONS010308 nuclear & particles physicsbackground:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]NATURAL SCIENCES. Physics.lead-leadcorrelationQuark–gluon plasmaproton-proton collisionsHigh Energy Physics::Experimenthadronlcsh:Physics
researchProduct